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Abstract—The considered problem is to simultaneously stabilize a family of second order linear
systems by static linear state feedback when applied to switched systems. The proposed synthe-
sis approach is based on a known design method where a static regulator is found as a solution
to the linear programming problem. This regulator makes all matrices from the family forming
switched systems superstable in the closed loop state, which in turn guarantees exponential sta-
bility of the switched system. This approach is generalized for the case where not all matrices
in the family can simultaneously be made superstable: for non-superstabilizable matrices one
determines using D-decomposition linear bounds on the set of stabilizing regulators, which are
used in the linear programming problem. The designed switched system properties are briefly
studied. An example of a design problem solution using the proposed approach is presented.
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1. INTRODUCTION

The problem of simultaneous stabilization is to find a common control law providing stability for
all elements of a certain family of dynamic plants. Such problems form a separate class in robust
control theory. They aroused the greatest interest in the period from the late ’80s to the ’90s of the
20th century [1–6]. The most popular, in practical sense, approach for their solution was proposed
in [2, 7] and is based on linear matrix inequalities (LMI), which are related to emergence of effective
numerical methods for solving semidefinite programming problems.

Conceptually similar synthesis problems arise in the theory of switched systems [8, 9], which
studies non-stationary systems of a special class. Parameters (and structure) of such systems are
changing in time according to a certain rule called switching law (or switching signal). Further, only
linear switched systems are considered, where linear subsystems matrices from a certain given set act
as the changing parameters (between which switching occurs). The solution to the simultaneous
stabilization problem for switched systems only provides a necessary condition for the system’s
asymptotic stability, which does not take into account the switching effect on the switched system
stability. However, in the most general case, the controller design problem for switched systems is
to find the regulator that guarantees asymptotic stability of the system for any arbitrary switching
law. This design problem is much more complex than just simultaneous stabilization. The main
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SIMULTANEOUS STABILIZATION 577

approach for solving it is to look for a regulator that provides the existence of a common Lyapunov
function for all subsystems.

The described general problem of linear switched systems stabilization was studied, in particu-
lar, in [10, 11], where a new approach to its solution using a static state regulator was proposed.
The main idea of the proposed approach was the use of superstability, which in relation to control
theory was proposed and studied by B.T. Polyak and P.S. Shcherbakov in [12, 13]. In [12], super-
stable matrices are described, and the properties of linear systems with such matrices (superstable
systems) are studied. While in [13], the problems of controller design, that makes the closed loop
system superstable, are considered, and a static state regulator design in the form of solving the
linear programming problem is also studied. In [14–17], superstability was used to solve other
control theory problems.

The use of superstability in relation to switched systems is due to the following feature: any
family of superstable systems of the same order forms an exponentially stable switched system
for any switching law [18]. It is this property that was used in the mentioned articles [10, 11] to
guarantee the stability when synthesizing a switched system. In [11], the theorem that extends the
results of [13] to the case of switched systems is presented. In particular, [11, Theorem 3] provides
the necessary and sufficient conditions for the existence of a regulator that makes the entire family
of original systems superstable, but there is no constructive synthesis algorithm in [11].

In [13], it is shown that superstabilization by a static state regulator cannot always be achieved;
therefore, the approach described in [11] may not be applicable since a superstabilizing regulator
that simultaneously satisfies all the needed constraints does not exist. This article proposes a modi-
fication of the approach [11], in which, for non-superstabilizable subsystems, i.e. for the subsystems
that cannot be made superstable by any static state regulator, one simply looks for a stabilizing
regulator. The design procedure is reduced to the solution of a linear programming problem (as it
was in [13]), in which linear constraints are divided into two types: the first one is given by systems
that can be made superstable, and the second one by those which are not. For the latter systems,
constraints giving the set of stabilizing regulators are determined using the D-decomposition tech-
nique [19, 20] by analyzing the stability of the characteristic polynomial of the closed loop system.
The solution to the described linear programming problem only provides stability of individual
subsystems of the switched system (i.e., it is a classical simultaneous stabilization problem), while
the exponential stability property for an arbitrary switching law is only preserved for a subset of
superstable matrices.

Another limitation of the approach is that it is applicable only to second order switched systems,
since D-decomposition is difficult to implement for studying more than two parameters. However,
one should note the general complexity of the problems of switched systems analysis and design,
even in simple cases of low order [8, 21, 22]. In fact, the only effective method of analyzing and
designing stable switched systems is to numerically verify the existence of a common quadratic
Lyapunov function for all its subsystems [7, 23], which is a sufficient condition for the system
stability for any switching signal.

The article is organized as follows. Section 2 describes superstable systems, their properties
and their application in problems of linear switched systems stabilization. Section 3 contains a
formal statement of the controller design problem. In Section 4, the problem is solved; the design
algorithm is described, and the properties of the switched system closed by the found regulator are
briefly analyzed. Section 5 provides a numerical example of the simultaneous stabilization problem
solution using the proposed approach. The article ends with conclusions describing the main results
and possible prospects for the approach improvement.
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2. PRELIMINARIES

2.1. Linear Superstable Systems

Matrix A ∈ R
n×n is called superstable [12], if it has on its main diagonal negative numbers that

absolute values exceed the sum of off-diagonal elements absolute values in the same row. These
conditions are presented as

−aii −
∑

j 6=i

|aij | > 0, i, j = 1, n,

where aij is the element of the matrix A, placed in the ith row and jth column.

The value

σ(A) = σ = min
i


−aii −

∑

j 6=i

|aij |


 , i, j = 1, n

is called degree of superstability of the matrix A.

A linear stationary system

ẋ = Ax, x(0) = x0, (1)

where x(t) ∈ R
n is the system state vector, x0 6= 0 is the initial condition and the matrix A is

superstable, is called superstable system.

It is shown in [12] that superstable system (1) is stable in the sense of Re{λ(A)} < 0, where
λ(·) are the matrix eigenvalues, and the system state for any initial condition is bounded by an
estimate:

‖x‖∞ 6 ‖x0‖∞e
−σt, t > 0, (2)

where ‖x‖∞ = max16i6n |x[i]| is the vector ∞-norm, x[i] is the ith component of the vector x. From
this it follows, that superstable system (1) has non-quadratic Lyapunov function

V (x) = ‖x‖∞. (3)

This result turns out to be very useful for the analysis and design of switched systems.

2.2. Switched Systems: Superstability and Superstabilization

Let us consider the switched system

ẋ(t) = Aρ(t)x(t), x(0) = x0 6= 0, (4)

where Aρ(t) ∈ A = {As ∈ R
n×n : s ∈ S} is the active (operational) matrix in the current time in-

stance, S = {1, . . . , S}, S ∈ N is the finite set of indices. The matrix Aρ(t) value is determined by
piecewise constant measurable switching signal

ρ(t) : [0,∞) → S. (5)

Thus, Aρ(·) is a matrix-valued function on the real axis, taking values from the set of real matrices A.

Some additional limitations on ρ(t) will be discussed separately in the corresponding sections.
Further, the dependence on time of the function ρ(t) is omitted in indices for simplicity.

It is proved in [18, Theorem 1], that if the set A contains only superstable matrices, then
system (4) is exponentially stable for any switching law (5) and arbitrary initial conditions x0.
Such a system is usually called a superstable switched system. Moreover, this result holds for any
(including infinite) sets of superstable matrices of any size.
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The proof of the corresponding theorem in [18] is based on the inequality (2) and the analysis
of the state vector upper bounds for system (4). More simply, [18, Theorem 1] is a corollary of (3),
since ‖x‖∞ is the common Lyapunov function for all superstable systems.

The following dynamic switched system was considered in [10, 11]:

ẋ = Aρx+ bρu, Aρ ∈ A, x ∈ R
n, bρ ∈ B = {bs ∈ R

n, s ∈ S}, (6)

where bρ is the active vector multiplier for control, that is introduced in the same way as system
matrix Aρ in (4), u ∈ R is the control signal formed by the linear static state regulator:

u = k⊤x,

where k ∈ R
n is the row-vector of its coefficients.

In [11] the authors considered the problem of finding a static regulator k that simultaneously
makes superstable all matrices from the set

M = {Ms = As + bsk
⊤, s ∈ S} (7)

of the closed loop system ẋ(t) =Mρx(t) = (Aρ + bρk
⊤)x(t), Mρ ∈ M. If such a regulator exists,

then it is called simultaneously superstabilizing.

In (7) and further, the subscript “s” is used for matrices (and their elements) to emphasize that
these notations refer to elements of the sets A and M, and not to the active matrices Aρ or Mρ.

In [11, Theorem 3] the necessary and sufficient conditions for the existence of a simultaneously
superstabilizing regulator are formulated. They are determined by the solution feasibility of a
special system of linear inequalities and are verified numerically.

From a practical point of view, it is convenient to represent these conditions in the form of the
following linear programming problem:

maxσ,

−(asij + bsikj)−
∑

j 6=i

nsij > σ, i = 1, n,

−nsij 6 asij + bsikj 6 nsij, i, j = 1, n, i 6= j, s ∈ S,

(8)

where asij + bsikj = ms
ij are the elements of the matrices from set (7) of the closed loop system.

In problem (8) the variables are: the degree of superstability σ, the regulator coefficients kj and
non-negative auxiliary scalar variables nsij.

In this formulation, the conditions for the existence of a simultaneously superstabilizing regulator
(or the solvability of problem (8)) are given by Theorem 2.1 from [13], which states, that if σ, k are
the solution to problem (8) and σ > 0, then the regulator k is the simultaneously superstabilizing
one. In the opposite case (when σ 6 0) the system cannot be made superstable by the control
u = k⊤x.

3. PROBLEM STATEMENT

Let us consider the controller design problem of a superstabilizing static state regulator for a
second order switched system of the form

ẋ = Aρx+ bu, u = k⊤x, Aρ ∈ A = {As ∈ R
2×2, s ∈ S}, (9)

where, in contrast to (6), the matrices As of the set A have dimension 2, and the vector b is given
and is not subject to switching.
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It is not always possible to design a simultaneously superstable regulator by solving problem (8),
even in this narrower and simpler case. In [20, p. 138] the authors show several cases for fixed
matrices in (9), for which superstabilization is a priori impossible: for example, when the vector
b ∈ R

2 contains zero elements, and the corresponding row of the matrix A does not satisfy the
conditions of superstability.

Further in (9) we set b = [1 1]⊤. For this case, in [13] a necessary and sufficient condition for
superstabilizability of the separate matrices As is obtained:

τ(As) = as11 − as21 + as22 − as12 < 0; (10)

and if τ(As) > 0, s ∈ S, then superstabilization by a static state regulator (for the certain ma-
trix As) is impossible.

It is also assumed that among the matrices As ∈ A there are those that cannot be made su-
perstable according to condition (10). A family of such matrices is denoted by Aφ, φ ∈ Sφ ⊂ S.
The remaining matrices, that can be made superstable, are denoted as Aψ, ψ ∈ Sψ ⊂ S, naturally
Sψ ∪ Sφ = S.

Let us consider the following design problem.

Problem 1. For system (9), find a static state stabilizing regulator, which for the family of
matrices Aψ provides the superstability of the matrices Mψ = Aψ + bk⊤ of the closed loop system,
and for the remaining matrices Aφ just provides stability of the closed loop system.

The Problem 1 is a simultaneous stabilization problem, when a common stabilizing regulator is
sought for several plants (subsystems), and it is impossible to guarantee its solvability in advance.
In this case, stability of the switched system closed by the found regulator is also not guaranteed
(unlike Problem (8)). The properties of the solution to the Problem 1 in relation to the switched
systems stability are described in more detail in the next section.

4. STABILIZING CONTROLLER DESIGN

Due to the presence of matrices Aφ, φ ∈ Sφ that cannot be made superstable, solving the Prob-
lem 1 using (8) is obviously impossible.

To solve Problem 1, an approach based on solving the linear programming problem is proposed,
that can also be treated as a modification of Problem (8), in which for the matrices, that cannot be
made superstable, constraints linear in k are used to ensure stability of the closed loop system with
the matrices Mφ. Such constraints can be obtained using the D-decomposition technique [19, 20],
which is described below.

For simplicity, the indices φ of the matrices A andM and their elements are omitted. Considering
b = [1 1]⊤, a characteristic polynomial of the closed loop system matrix

M = A+ bk⊤ =

[
a11 + k1 a12 + k2
a21 + k1 a22 + k2

]

takes the form

d(s, k) = det(sI −M) = s2 − s(k1 + k2 + a11 + a22) + k1(a22 − a12) + k2(a11 − a21) + det(A).

According to [20], when k changes, the location of the d(s, k) roots can change only if the real
root (or the real part of complex conjugate roots pair) crosses zero (crosses the imaginary axis on
the complex plane). The corresponding boundaries of the D-decomposition are described by the
parametric equation d(jω, k) = 0 or in explicit form:

{
−ω2 + k1(a22 − a12) + k2(a11 − a21) + det(A) = 0,
ω(k1 + k2 + a11 + a22) = 0.

(11)
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SIMULTANEOUS STABILIZATION 581

For ω = 0 system (11) has a singular solution

k1(a22 − a12) + k2(a11 − a21) + det(A) = 0, (12)

which gives us the equation of one of the boundaries.

The second boundary is obtained from the second equation in (11):

k1 + k2 + a11 + a22 = 0, (13)

with the difference that the boundary is not the entire line, but a ray outgoing from the point of
intersection with the line (12), which is parametrically determined by the following functions:

k1(ω) =
1

r
(ω2 + a211 − a21[a11 + a22 − a12]),

k2(ω) = −
1

r
(ω2 + a222 − a12[a11 + a22 − a21]),

r = −a11 − a12 + a21 + a22, ω ∈ (0,∞).

(14)

The boundaries of the D-decomposition, determined by (12) and (13), (14), split the regulator
parameters plane (k1, k2) into the three areas:

—the real parts of both roots of the polynomial d(s, k) are non-negative (Re{λ1,2(M)} > 0);

—one root of the polynomial d(s, k) is stable, but the second one is not (Re{λ1(M)} < 0,
Re{λ2(M)} > 0);

—both roots of the polynomial d(s, k) are stable (Re{λ1,2(M)} < 0).

The last area, where the closed loop system matrixM is stable, defines a set of stabilizing regulators
for the corresponding matrix A. The boundaries of this set are determined by linear constraints
obtained from (12), (13).

Using the determined constraints, the following linear programming problem that solves Prob-
lem 1 is formulated:

maxσ,

−(aψij + kj)−
∑

j 6=i

n
ψ
ij > σ, i = 1, 2,

−nψij 6 a
ψ
ij + kj 6 n

ψ
ij, i, j = 1, 2, i 6= j, ψ ∈ Sψ,

c
φ
i k

⊤ + z
φ
i < 0, i = 1, 2, φ ∈ Sφ.

(15)

In (15), constraints on the elements of closed subsystems matrices Mψ, ψ ∈ Sψ coincide with the

similar ones in (8). Vectors cφi ∈ R
2 and scalars zφi ∈ R, found using D-decomposition, define linear

constraints guaranteeing stability of the closed loop system for matrices Mφ.

Now, an algorithm for solving Problem 1 for system (9) can be formulated.

Algorithm 1.

1. Find subsets Aφ and Aψ of the plant matrices As ∈ A using (10).

2. Carry out D-decomposition for matrices Aψ according to the described approach and find
the constraint parameters using (12), (13).

3. Create and solve linear programming problem (15).

The existence of a solution to problem (15) is determined by the same conditions as for prob-
lem (8): if a solution k, σ > 0 is found, then Problem 1 has been solved.
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582 SHATOV

The described algorithm can be used to solve a general problem with an arbitrary vector b =
[b1 b2]

⊤ ∈ R
2 in the system (9). However, in this case, criterion (10) cannot be used to determine the

set Aφ, φ ∈ Sφ. So, in the first step of Algorithm 1 the superstabilizability of the matrices As, s ∈ S
should be checked using the design procedure from [13, section 2]. System (11) will respectively
take the form {

−ω2 + k1(b1a22 − b2a12) + k2(b2a11 − b1a21) + det(A) = 0,
ω(k1b1 + k2b2 + a11 + a22) = 0.

The computational formulae (12), (13) and (14) for finding the boundaries of the stability area will
change accordingly.

It should be noted that the first step of Algorithm 1 allows one to check only the necessary
condition for simultaneous superstabilization, namely, the superstabilizability of individual matrices
(moreover for the fixed vector b). However, even if all matrices As, s ∈ S can individually be made
superstable, it may occur that together they are not simultaneously superstabilizable. In this case,
Algorithm 1 can be slightly modified: one can form the family Aψ “manually”, using the following
condition as a goal criterion

max
S

|Sψ|.

i.e. try to find a solvable problem (15) in which the maximum possible number of matrices from A
can simultaneously be made superstable. Such a problem is combinatorial and for small dimensions
of S can be solved by simple brute-force search. For larger dimensions of S, one can form the set Sψ
by analysis of the intersection area of sets of matrices As, s ∈ S superstabilizing regulators, which
can be constructed explicitly by studying the inequalities −ms

ii > |ms
ij |, i, j = 1, 2, i 6= j, for more

details see the example in Section 5.

Note also, that there is a singular case when no matrix in A can be made superstable using a
static regulator. Then the usage of the proposed approach is reduced to analyzing the intersection
area of sets of the stabilizing regulators, which are found by D-decomposition. If the intersection
area is non-empty, then it constitutes a set of simultaneously stabilizing state regulators. Otherwise,
if it is empty, then such regulators do not exist. Other cost criteria of the regulators can be optimized
over the found set [23, 24]. Herewith, the set of simultaneously stabilizing regulators has a simple
form, since it is determined by a system of linear inequalities.

It was mentioned above that switched system (9) designed using (15) can lose the property of
exponential stability for any switching signal, which is provided by the solution of problem (8).
More precisely, it is preserved only for switching between superstabilizable matrices Aψ, ψ ∈ Sψ,
while for whole system (9) only the necessary condition of the switched system stability is satisfied:
the stability of each individual matrix in the set M.

Due to the last property, it is possible to use known approaches to providing stability of sys-
tem (9) by adding certain restrictions on the switching law ρ(t). For example, there is a known
approach in which the maximum switching rate is limited, which is implemented using the concept
of dwell-time denoted by td > 0. It is introduced as the minimum time interval between two adja-
cent switchings, that guarantees the switched system stability for any switching sequence. In [25],
an algorithm for finding the upper bound of td is proposed, which is based on the following theorem.

Theorem 1 [25]. Let t̂d > 0 be a given number. If there exists such Pi ∈ R
2×2, i ∈ S, that





Pi > 0, ∀i,

A⊤
i Pi + PiAi < 0, ∀i,

eA
⊤

i
t̂dPje

Ai t̂d < Pi, ∀i 6= j,

then system (9) is exponentially stable for any arbitrary switching law ρ(t), constrained by the
dwell-time t̂d.
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The estimate of td is determined by a one-dimensional search: first, some sufficiently large number
τ0 > 0 is selected for which the conditions of Theorem 1 at Ai =Mi, ∀i are satisfied. Then for the
sought estimate the following relation t̂d ∈ (0, τ0] holds. Next, t̂d is determined with the desired
accuracy by the binary search method. The found dwell-time estimate is the best in the sense of
quadratic Lyapunov functions.

5. EXAMPLE

Let us consider system (9) with b = [1 1]⊤ and with the set of matrices A:

A1 =

[
−1 1
−3 −2

]
, A2 =

[
1 4
2 0

]
, A3 =

[
1 −1
2 1

]
, S = {1, 2, 3}, (16)

where As have the following values of τ(As) according to (10) and eigenvalues λ(As):

τ(A1) = −1, τ(A2) = −5, τ(A3) = 1,
λ(A1) = −1.5± j1.658, λ(A2) = {3.372, −2.372}, λ(A3) = 1± j1.414.

Matrices A1 and A2 can be made superstable, but matrix A3 cannot; according to the first step
of Algorithm 1, the sets of matrices Aψ = {A1, A2} and Aφ = A3 are formed.

Using the D-decomposition technique based on (12)–(14), the set of stabilizing regulators for
the matrix A3 is determined, its boundaries are defined by the following inequalities:

2k1 − k2 + 3 > 0,
k1 + k2 + 2 < 0.

Proceeding to the constraints form used in (15), one gets:

c1 = [−2 1]⊤, z1 = −3,
c2 = [1 1]⊤, z2 = 2,

where for simplicity, the superscript φ is omitted, since Aφ consists of only one matrix.

Figure 1a shows how the described technique is used to analyze matrix A3: in the space of
regulator coefficients (k1, k2), the solid straight line is defined by 2k1 − k2 +3 = 0, and the dotted
straight line is defined by k1 + k2 + 2 = 0. Its visible part is not the boundary; i.e., the number 2
denotes the entire halfplane “to the left” of the solid line.

The sought area of the stabilizing regulators is shaded, and numbers 1 and 2 correspond to
the remaining areas in the order according to (14): in the first one, both eigenvalues of the closed
loop system matrix are unstable ((Re{λ1,2(M3)} > 0), and in the second one, only one of them is
unstable (Re{λ1(M3)} < 0, Re{λ2(M3)} > 0).

At the last step of solving Problem 1, linear programming problem (15) is formed and numerically
solved using appropriate software. In this article, MATLAB with the cvx package was used.

As a result of the design, the following regulator was found:

k⊤ = [−2.635 − 4.135], (17)

which provides that the matrices M1 and M2 are superstable with the degree of superstability
σ = 0.5 > 0, and the matrix M3 is stable. Consequently, Problem 1 of simultaneous stabilization
has been solved.

In Fig. 1b the design procedure is illustrated: solid lines demonstrate the boundaries of sets of
the superstabilizing regulators for matrices A1 and A2, obtained from the analysis of inequalities

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 6 2024
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Fig. 1. (a) The boundaries of D-decomposition for matrix A3; (b) the results of problem (15) solution: the
designed regulator is shown by the large black dot.

Fig. 2. The phase portrait of system (9), (16), (17) at x(0) = [−0,1 0]⊤ and the dwell-times: (a) td = 0.2 s
and (b) td = 0.255 s.

−mψ
ii > |mψ

ij |, i, j = 1, 2, i 6= j, ψ = 1, 2, and the dotted line shows the boundaries of set of the
stabilizing regulators for matrix A3. The large black dot denotes the solution found numerically,
while the small dots around it highlight the area containing regulators that satisfy the constraints
in the corresponding problem (15).

System (9) with matrices (16) and regulator (17) is not exponentially stable for arbitrary switch-
ing law ρ(t). Figure 2a shows the trajectory of system (9), (16), (17) at x(0) = [−0.1 0]⊤ and the
signal ρ(t), which changes the active matrix after a time interval td = 0.2 s, and switchings are
made only between matrices A1 and A3 (or, respectively, only between M1 and M3 in the closed
loop system). In this case, the trajectory of the system is not bounded (‖x(t)‖∞ → ∞ as t→ ∞).

Using the described algorithm [25], an estimate of the dwell-time t̂d = 0.254 s was found. In
Fig. 2b demonstrates the phase portrait of the system under the same conditions that were used

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 6 2024
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for Fig. 2a, but with a dwell-time td = 0.255 s, from which it is clear that the system trajectory
converges to zero over time.

Note that a numerical verification of the approach to simultaneous stabilization described in
[7, 20] showed that for matrices A if a static state regulator is designed, the corresponding linear
matrix inequality, that guarantees existence of a common quadratic Lyapunov function, is infeasible.

6. CONCLUSION

The article proposes an approach to solving the simultaneous stabilization problem of second
order linear systems by a static state regulator, which is the modification of the well-known method
for designing switched systems based on superstability. The controller design procedure, as it
happens in the original method, is reduced to solving a special linear programming problem. The
controller design algorithm and the brief analysis of the designed regulator properties in the stability
sense of the switched system are presented. The proposed design procedure is illustrated with a
numerical example.

The new procedure extends the class of solvable problems to matrices that cannot be made
superstable, at the cost of losing the ensured exponential stability of the switched system. It is
preserved only for a subset of superstable subsystems. Partial compensation of this drawback
is carried out by limiting the switching rate, which is implemented by estimating the minimum
dwell-time using the known method.

Development of this approach includes an attempt to take into account dwell-time in the design
procedure. As an extreme case, one can discard superstability altogether and formulate the problem
of searching for the dwell-time optimal static regulator over a set of simultaneously stabilizing
regulators found using the described D-decomposition procedure.

Potential problem for further research is the analysis of classes “analogous” to superstability,
which also a priori guarantee the existence of a common Lyapunov function for matrices of the
switched system, but are broader. The most obvious candidate in this direction seems to be
diagonally stable matrices, a subset of which are superstable ones.
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